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Abstract: Animals have frequently been used as models for human disorders and mutations.
Following advances in genetic testing and treatment options, and the decreasing cost of these
technologies in the clinic, mutations in both companion and commercial animals are now being
investigated. A recent review highlighted the genes associated with both human and non-human
dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with
both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review
gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human
and animal dilated cardiomyopathy.
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1. Introduction to Cardiomyopathies

Cardiomyopathies are a group of diseases of the heart muscle that contribute to cardiac
dysfunction leading to heart failure [1]. They are associated with a high rate of morbidity and mortality
and increased risk of sudden cardiac death. According to the American Heart Association, there are
five classifications of cardiomyopathy: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), restrictive cardiomyopathy (RCM), arrhythmogenic right ventricular cardiomyopathy (ARVC),
and left ventricular non-compaction (LVNC) [1,2]. HCM in humans is characterized by left and/or right
ventricular wall thickening with non-dilation of the ventricles with myocyte disorganization, fibrosis,
increased calcium sensitivity, and cardiac arrhythmias [3]. RCM, a rare form of cardiomyopathy,
presents with dilated atria, restricted ventricular filling, reduced diastolic volume in the ventricles
with occasional fibrosis of the myocardium [4]. Arrhythmogenic right ventricular cardiomyopathy
is associated with cardiomyocyte replacement with fibrofatty tissue. This fatty deposition results in
obstruction of electrical conduction, thus resulting in arrhythmias [5]. LVNC is characterized by the
presence of prominent trabeculae and deep recesses in the ventricular cavity of the mature heart and
can coexist with congenital heart defects such as atrial and ventricular septal defects, aortic stenosis and
aortic coarctation [6]. These cardiomyopathies are also further subclassified into inherited and acquired
diseases. Mutations in sarcomeric proteins have been associated with all of the cardiomyopathies,
except for ARVC.

1.1. Dilated Cardiomyopathy in Humans

Idiopathic dilated cardiomyopathy has a high incidence of 1 in 250 people and is the most common
reason for heart transplants [2]. The DCM phenotype includes dilation of one or both ventricles and
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systolic dysfunction, and is usually associated with congestive heart failure [7,8]. DCM is associated
with a range of causes such as familial, environmental, idiopathic, or as part of the progression of other
cardiovascular disease [9]. Genetic forms of DCM, which account for 30–50% of cases, usually result
from mutations in genes encoding cytoskeletal and sarcomeric proteins such as myosin heavy chain 7
(MYH7), cardiac muscle troponin T (TNNT2), and Titin (TTN) [10].

1.2. Dilated Cardiomyopathy in Animals

Clinical data indicates that DCM accounts for 10% of cardiac diagnoses in dogs, with
cardiovascular disease being the fourth most common cause of canine death [11,12]. In dogs, differing
incidence rates in the breeds have indicated that a genetic link may be present. An autosomal link
was first suggested in the 1990s [13]. Since then a number of genetic associations have been made
throughout the breeds [14]. These have ranged from single gene deletions [15] to splice site and point
mutations [16–18]. More recently models and genetic testing in affected dogs has indicated the role of
both multiple allele linkage and multiple allele involvement in DCM [19,20].

DCM has been reported in wild turkeys [21], furazolidone-induced DCM captive turkeys [22–24],
hypoxia-induced hypoxemia birds [25] and calcium activated turkey models [26]. Roughly 2–5% of
domesticated turkeys get DCM within the first four weeks of hatching [27]. Diet has been shown
to play a key role with birds fed a high protein diet twice as likely to suffer death as a result of
cardiomyopathy [28], but variations in Troponin T and phospholamban (PLN) have also been linked
to DCM [27,29].

Feline DCM clinical outcomes improved rapidly following the discovery that dietary taurine
supplementation worked in both naturally acquired and experimental populations [30–33]. Despite
this discovery, DCM was still present in the population and investigations into two breeding colonies
indicated that a genetic factor was likely [34]. In addition to these species, cattle and chickens also
have DCM [35–37].

A recent review highlighted that both cardiac troponin T and dystrophin mutations play a role in
cardiomyopathies in both humans and animals [38]. This review explores the literature to date and the
mutation links to DCM for each gene.

1.3. Expression, Structure, and Function of Cardiac Troponin T

The troponin complex is a multipart protein found in the thin filament of the sarcomere.
It is composed of three parts: troponins (Tn) C, I, and T encoded by TNNC, TNNI, and TNNT,
respectively [39]. TnC, binds Ca2+ which induces a conformational change to the Tn complex [40].
TnI is the inhibitory component of the unit. Muscle contraction is powered by the actin-myosin motor,
which converts ATP into energy (using ATPase) for a power stroke through each cross-bridge cycle [40].
TnI blocks ATPase activity in a Ca2+ dependent manner.

TnT is essential for structural integrity of the troponin complex, binding tropomyosin (TPM),
TnC, and TnI and is essential for sarcomere assembly and cardiac contractility [41]. When Ca2+ binds
to TnC inducing a conformational change to the Tn complex, cTnC binds to cTnI causing it to release
cTnT. This lever action moves TPM around the actin filament, thus exposing myosin binding sites on
the actin filament.

Three TnT genes exist, slow skeletal TnT (TNNT1), cardiac TnT (TNNT2), and fast skeletal TnT
(TNNT3). In addition, alternative RNA splicing adds another dimension of generating multiple
isoforms of TnT, a process with is developmentally regulated. Exon 4, exon 5, and exon 13 are
alternately spliced, where exon 5 is absent in the adult isoform of cTnT. This exon produces a highly
acidic and negatively charged 10 amino acid segment which shows higher Ca2+ sensitivity of the
ATPase activity and force production when compared to the adult isoform [42], suggesting not just
a structural role, but also a functional one for TnT in the sarcomere.

Understanding the structure of cTnT may elucidate a reason why point mutations cause such
devastating effects on the heart. At the N-terminus of cTnT, the first 1–59 amino acid residues are
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enriched with negatively charged residues of glutamine and aspartate [43]. It is a highly variable region,
lacking any known protein binding sites, such as actin or tropomyosin [44]. Conversely, the remaining
N-terminus, middle portion and C-terminus of the protein are highly conserved and enriched with
positively charged residues (Figure 1A,B) [43]. There are two TPM binding domains, one of which is
present at the N-terminus (known as T1 fragment) within residues 98–138 [45]. The T1 sub-fragment is
thought to bind to the C-terminus of the TPM in the region where TPM overlaps head to tail to form
a continuous TPM filament [46]. Residues 183–204 act as a flexible linker between the T1-fragment and
the C-terminus [47]. An actin binding site is present in this linker. The C-terminus of TnT is composed
of α-helical rings at residues 204–220 (Helix 1) and 226–272 (Helix 2) [47,48]. A second TPM binding
domain (T2) is close to the C-terminus, but controversy remains as to its precise location (either at
residues 197–239 or the last 16 residues of the TnT sequence) [45,49–52].
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Figure 1. The structure and functional regions of cardiac troponin T alongside the sequence alignment
of the regions. (A) A schematic image showing the structure of the cTnT protein. The first region of
the T1-fragment is known as the hypervariable region and is highly unconserved. Different binding
domains of other thin filament proteins are highlighted in the schematic, the blue line indicates the
tropomyosin binding domain, green the actin binding domain, and red is the troponin I and troponin
C binding domains. L1 and L2 indicate the flexible linkers between helix zone 1 and 2; (B) A multiple
species alignment of the cTnT protein in comparison to the regions shown in A. Mutations associated
with dilated cardiomyopathy are aligned also. The first 70 amino acids of cTnT have been excluded as
no mutations are known in this area. Accession numbers for each species are: human NP_001001430,
bovine AF175558, sheep P50751, dog NP_001003012, cat NP_001009347, rabbit A25345, guinea pig
NM_001172863, mouse NM_011619, turkey AF274301, chicken NM10013, and zebrafish NP_69085.
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1.4. Cardiac Troponin T Mutations Relating to Cardiomyopathy in Humans

Currently, over 90 mutations have been identified in Tn subunits associated with hypertrophic
cardiomyopathy, dilated cardiomyopathy, left ventricular non-compaction, and restrictive
cardiomyopathy [53,54], with mutations in cTnT believed to have a frequency of 3–6% in DCM [55].
Mutations in cTnT that have been linked with DCM are listed in Table 1 along with their clinical
presentation and known molecular and cellular effects. These mutations are also compared to multiple
species for conservation in Figure 1B. Point mutations are most commonly found in the conserved
region of the T1 terminal and the C-terminal of cTnT. Interestingly, no mutations have been found in
the N-terminal hypervariable region of cTnT. This may be due to the nature of such a variable region
in that it is more tolerable to changes introduced by a single amino acid substitution than an area that
is highly conserved would be.

Mutations associated with HCM and RCM generally lead to increased Ca2+ sensitivity in the
thin filament [53]. In contrast, decreased Ca2+ sensitivity is commonly observed in mutations in cTnT
associated with DCM (R131W, R139H, R141W, R151C, R159Q, R205W, ∆K210, and K273E) [52,56].
Lu et al. suggested that the reason one mutation could possibly have such a huge impact on Ca2+

sensitivity was due to an increase in the affinity of cTnT for TPM1 observed for the R141W mutation.
The mutation strengthened the integrity of cTnI in the thin filament by stabilizing the interaction
between cTnT and TPM, which might allow cTnI to inhibit the thin filament more effectively, leading
to Ca2+ desensitization [57]. However, some mutations report no change (R134G) [52], suggesting that
Ca2+ sensitivity is a stimulus sufficient to cause DCM, but not essential, or the only cellular mechanism
triggering cardiac remodeling observed in DCM.

Table 1. Mutations found in TNNT2 associated with dilated cardiomyopathy, sudden cardiac death
(SCD), dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), Leiden Muscular
Dystrophy (LOVD).

Mutation/rs ID Exon Clinical Presentation/Frequency Molecular/Cellular Effects Reference

E96K/LOVD#0030558 10 Familial DCM (age 5 months) - [58,59]

R131W/rs
483352833 11 DCM diagnosed (age 23); SCD (age 16);

heart failure death (age 34)

Enhanced cTnC-cTnI
interaction while decreasing
cTnC-cTnT interactions;
decreased Ca2+ sensitivity;
decreased ATPase activity

[56,60,61]

R134G/45525839 11 Familial DCM (age 6) and heart transplant
(by age 7)

increased maximal force
development; no change in
Ca2+ sensitivity

[52,58,60,62]

R139H 11 Late onset DCM (age 70)
Decreased Ca2+ sensitivity
and maximal force
development

[63]

R141W/rs 7315379
and rs 74315380 11 Idiopathic DCM and Familial DCM; does

not cause SCD

Increased affinity of cTnT to
TPM; decreased Ca2+

sensitivity; decreased
ATPase activity

[56,62,64]

R144W/rs
483352832 11 Familial DCM with history of SCD;

variability in severity within the family Decreased ATPase activity [65]

R151C/rs 45608937 11 Idiopathic DCM Decreased Ca2+ sensitivity [52,60]

R159Q/rs 45501500 12 Idiopathic DCM Decreased Ca2+ sensitivity [52,60]

A171S 12 Familial DCM and SCD (>age 20) - [66,67]

R173G 12

Familial DCM. Diagnosed at birth with
dilated left ventricles (n = 2).
Asymptomatic maternal uncle (age 45) and
his cousin with mildly dilated left ventricle.

- [68]

R173W 12
Familial DCM with dilated left ventricle,
decreased ejection fraction and heart
transplant (age 14)

Altered Ca2+ regulation;
decreased contractility;
sarcomere disorganization

[69,70]

R173Q 12
Dilated left ventricle at birth; SCD due to
arrhythmia; asymptomatic dilated
left ventricle

- [68]
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Table 1. Cont.

Mutation/rs ID Exon Clinical Presentation/Frequency Molecular/Cellular Effects Reference

R205W/rs
45586240 14 Idiopathic DCM (6 months) Decreased Ca2+ sensitivity [52,60]

R205L/rs
121964860 14 Familial DCM

Impaired cTnI-cTnC and
cTnC-cTnT interactions;
decreased ATPase activity

[56,61]

∆K210/rs
121964859 14 Familial DCM; high incidence of SCD

Decreased Ca2+ sensitivity,
maximal force and ATPase
activity; impaired cTnC-cTnI
and cTnC-cTnT interactions

[61,71–74]

E244D/rs 45466197 15

Familial DCM, previously associated with
HCM; idiopathic DCM (age 7), heart
transplant required; mutation seen with
A277V mutation in TPM1. Identified
in one family.

- [52,58,75]

D270N/rs
121964861 16 Familial DCM (early death in n = 2 family

members age 44 and 21)

Impaired cTnC-cTnI and
cTnC-cTnT interactions;
decreased Ca2+ sensitivity and
ATPase activity

[61,76]

Mutations within the same contractile protein can cause HCM, RCM, and DCM, with each
cardiomyopathy having its own distinct phenotype. This suggests that different signaling pathways or
a graded response within the same pathway is activated, thus producing such variable phenotypes.
For example, in transgenic mice with a truncated myosin binding protein-C (MyBP-C) protein, there is
a graded response with the heterozygous mouse developing HCM and the homozygous developing
DCM [77]. In addition, a heterozygous mutation in TnI results in RCM, while the homozygous state results
in DCM [78,79]. Concurrently, the ratio of mutated to wildtype transcripts is critical in determining severity
of DCM [80,81]. On the other hand, molecular signaling studies in DCM and HCM mouse models have
reported activation of different signaling pathways suggesting remodeling and profibrotic mechanisms in
the two cardiomyopathies are differentially regulated, thus producing two separate phenotypes [82].

Left ventricular systolic function is compromised in DCM, a key symptom for the disease; however,
this is usually preserved in HCM. Interestingly, in the latter stages of HCM morphological features
resembling DCM occurs in 5–10% of patients. Patients have a progression to systolic impairment
associated with left ventricular remodeling, wall thinning and cavity dilation, thus resembling DCM.
Therefore, it is known as the dilated phase of HCM (or D-HCM) [83]. D-HCM is more symptomatic
than DCM, where the left atrium is also larger in size with a higher prevalence of atrial fibrillation.
This is also combined systolic and diastolic dysfunction. In addition, left ventricular remodeling is not
seen in D-HCM and the prognoses is much poorer [83]. Mutations in TNNT2 have been associated
with this HCM to D-HCM transition, I79N, R92W, R92Q, R113W, and K273E (Table 2) [71,84–90].

Table 2. Mutations in TNNT2 associated with multiple cardiomyopathies, including hypertrophic
cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), sudden
cardiac death (SCD).

Mutation Exon Clinical Presentation Molecular/Cellular Effects Reference

I79N 8 Previously diagnosed in HCM with high incidence of
SCD. Idiopathic DCM (age 68 and 64)

Disrupts the TPM binding
domain of cTnT [86,87]

R92W 10 Progression from HCM to DCM - [71,84]

R92Q 10

Mixed phenotype such as mild HCM, DCM with
ventricular dysfunction and noncompaction; severe left
ventricular dysfunction, dyspnea, chest pain and SCD
(and SCD without clinical manifestation)

- [88,89]

R113W 10 HCM, DCM and RCM - [62,90,91]

K273E 16
Transition from FHC to DCM during disease
progression; initially asymmetrical septal hypertrophy
with disease progression to DCM; high incidence of SCD

Decreased ATPase activity and
Ca2+ sensitivity, impaired

force production
[85]
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1.5. Cardiac Troponin T Mutations Relating to Cardiomyopathy in Non-Humans

As mentioned above, alternative splicing of TNNT2 gives rise to various isoforms that are
developmentally regulated. Each isoform varies in structure and function, thus fine-tuning muscle
contractility. Alternative spliced isoforms, independent of developmental regulation, have been found
in diseased hearts and additionally have been found to cause DCM in turkeys and dogs [92]. A low
molecular weight cTnT, due to the exclusion of exon 8, is expressed in turkeys (often induced by
Furazolidone). Exon 8 accounts for 12 amino acids in the protein and expression of this low molecular
weight isoform over 30% in myofibrils results in changes to the conformation and the binding affinity
for TnI and TPM, with minor alterations to Ca2+ sensitivity [23].

Exon 7 deletion is observed in canine DCM, where exon 7 is the mammalian equivalent of avian
exon 8. The 12 amino acid deletion in canine (Doberman pincher) showed reduced shortening and
re-lengthening of muscle fibers upon stimulation [92]. Exclusion of Exon 6 in guinea pig results in
a 25 amino acid residue difference, much larger than that seen in turkey and canine and would suggest
significant functional effects [92].

1.6. Expression, Structure, and Function of Dystrophin

The dystrophin (DMD) gene codes for the dystrophin protein and at 2.3 megabases long, with
86 exons, it is also one of the largest in the human genome and is situated on the X chromosome [93–95].
The isoforms expressed in cardiac tissue are brain (Dp427 B), muscle (Dp427 M), retinal (Dp260, low
expression levels), and G-dystrophin (Dp71) [96,97]. However, the muscle promoter is the main one
used for cardiomyocyte expression, with further isoforms produced via splicing alterations such as
exon scrambling and exon skipping [98,99].

1.7. Dystrophin Mutations Relating to Cardiomyopathy in Humans

Dystrophin has been of interest for many years as mutations have been linked with Duchenne
and Becker muscular dystrophies, X-linked DCM and tumor progression and development [99–102].
A basic PubMed search (June 2017) shows 2526 articles with the word ‘dystrophin’ in the title alone,
and the same search in ‘Web of Science’ shows 3484 results. The Leiden Open Variation Database
shows 25,828 confirmed DNA variants and 25,830 RNA and protein variants for human DMD and by
2005 there were 4704 known mutations [103,104]. The UMD-DMD France mutations database reports
2898 fully characterized mutations in dystrophin causing either Becker muscular dystrophy, Duchenne
muscular dystrophy, or X-linked DCM. It is estimated that around 33% of all Becker muscular dystrophy
and Duchenne muscular dystrophy causing mutations are spontaneous [105]. Several reports have
shown no linkage between the size of deletion or duplication and clinical severity. Clinical outcome does
appear to be correlated to whether frameshift or nonsense-mediated RNA decay occurs, indeed deletions
of up to 50% of dystrophin have resulted in Becker muscular dystrophy [106–110]. The mutation types
and clinical outcomes were reviewed in detail by Muntoni and colleagues [97].

One of the biggest problems is determining which mutations cause cardiac only symptoms, as
even most of the X-linked cardiomyopathy mutations result in some degree of skeletal muscle problems,
such as increased plasma creatine levels. In contrast, many of the human and animal cardiomyopathies
occur without concomitant skeletal muscle disorders. However, a detailed analysis of the X-linked
cardiomyopathy mutations in humans is explored by Ferlini and colleagues [111], but more than
30 mutations in Duchenne muscular dystrophy are thought to cause DCM. There are some common
areas which are affected though. There are a group of mutations in the 5′ region that result in altered
transcription and splicing. It is thought that the skeletal muscle is able to compensate for this isoform
by upregulating other isoforms, but this is not possible in the cardiac tissue [99,112]. Loss of transcript
has been shown in a number of cases where a mutation has affected exon 1 resulting in loss of the M
isoform [99,113,114]. Not all mutations result in full loss of isoforms. One 5′ mutation (duplication of
exons 2–7) showed normal transcription in skeletal and cardiac muscle, but a lack of protein expression
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in the heart tissue only [115]. An intron 11 deletion resulted in a lack of the all transcripts in cardiac
tissue, whereas skeletal muscle was only partially affected, with normally spliced isoforms able to be
expressed [111]. Interestingly, other splice mutations in the 5′ end result in dystrophin expression in
both cardiac and skeletal muscle [116]. A mutation in exon 9 also indicated a cardiac specific role for
the epitope in question as skeletal effects were not observed [117]. These cardiac affecting mutations
highlight the importance of the differing tissue types when considering both transcript and protein
levels and their affects in differing regions.

The mutation region also appears to correlate relatively well with clinical severity. In patients
with 5′ mutations, the clinical manifestations are usually severe, whereas those in the spectrin-like
domain present with a less severe phenotype. It has been hypothesized that the 5′ region mutations
may affect enhancers, whereas the spectrin-like domain mutations may only cause loss of a cardiac
relevant domain, such as the hinge domain or a regulating sequence. The full mechanisms have yet to
be elucidated [111,118].

1.8. Dystrophin Mutations Relating to Cardiomyopathy in Non-Humans

Another problem when looking at the murine models is the differing phenotypes between humans
and mouse models. In general, the lines created which affected dystrophin only showed very mild
phenotypes and usually later on in life [119–121]. The symptoms become more pronounced when using
double knockdown models including integrin/dystrophin, utrophin/dystrophin, myoD/dystrophin,
and δ-sarcoglycan/dystrophin [122–124]. In addition, these mice frequently are easier to work on,
as the cardiomyopathy symptoms occur earlier in life in comparison to dystrophin only models,
making the work less expensive and less time consuming [125]. Over 60 models of Duchenne muscular
dystrophy have been published and consist of both naturally occurring and laboratory induced animals
ranging from the fly, cat, pig, mouse, and dog [126,127]. Despite dystrophin being the primary target
gene in many (but not all) of these models and cardiomyopathy being the most common cause of
death, very few have DCM as the only symptom, despite so many animals naturally occurring with
DCM only in normal populations.

The dog has been a model for Duchenne muscular dystrophy since 1951 [128]. Later groups started
investigating the dystrophin gene with over 20 breeds reported as having dystrophin disruption [126].
Research in the 1990s showed that dystrophin was important in canine X-linked muscular dystrophy
and dilated cardiomyopathy [129–131]. A point mutation in Golden retrievers in intron 6 (consensus
splice acceptor) resulted in a muscular dystrophy like phenotype [132,133]. The resulting colonies
were used for phenotypic evaluation and genetic therapy trials for a number of years [132,134].
Gene therapy in both mouse models and dogs have shown promising results for delivering mini- or
micro-dystrophins delivered via adeno-associated viral vectors especially when immunosuppression
is used [135–137]. Although this is more suitable for skeletal muscle, cardiovascular tissue is more
complex. A trial using intravenous injection of adeno-associated virus serotype-9 did not show cardiac
muscle transduction [138], a serious problem when considering DCM treatment. The first work to
look at DCM in three breeds (Doberman Pinschers, Irish Terrier, and German Shorthaired Pointers)
indicated that the dystrophin promoter region was not involved in DCM for the first two breeds,
but a deletion was observed in the German Shorthaired Pointers. It is worth highlighting that the
numbers of Doberman Pinschers and Irish Terriers were relatively small (n = 9 and 1 respectively) [129].
Dystrophin mutations are also complex in that mutations are frequently spontaneous. It has been
indicated that some breeds and families are more likely to develop DCM [12,139–143]. There is a strong
suggestion in the literature for an autosomal inheritance mode in canine breeds such as the Irish
Wolfhound, Newfoundland, Great Dane, and Portuguese water dog [139–144]. These indicate that
dystrophin, with its one third de novo mutation rate and X-linked DCM, may not play a role in many
canine DCM cases, but with around 5% of human DCM cases presenting as X-linked, this mode is still
a possibility in other species [145].
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2. Discussion

Dilated cardiomyopathy has been increasingly of concern in both domestic and commercial
animals. The economic loss, food security threats and impact of loss and treatment costs make the
condition important to both breeders and owners, the veterinary medicine community, healthcare
insurance, pharmaceutical companies, and those involved in the food industry. Advances in genetic
testing and more recently gene therapy proof of concept advances are now making mutation
detection more accessible and treatment development more promising even in the large dystrophin
gene [146–148]. In addition, finding causative mutations enables testing for at risk breeds and species
prior to clinical detection and/or symptoms. The decreasing costs of mutation detection and genetic
testing tools mean that undertaking this approach in non-human animals are more viable options than
a few years ago. Given the size and complexity of dystrophin, investigating the mutation rate will be
more expensive and time consuming that the smaller cardiac troponin T. In addition, although many
murine and canine dystrophin mutations have shown phenotypic alterations, few are DCM only, which
makes it difficult in assessing whether the gene is valuable as a DCM only candidate. With the high
de novo rate of mutation and the emerging evidence that DCM in dogs for example is an autosomal
inherited disorder in general, it may reduce the possibility that the gene is involved in some species.
However, when considering that there are over 4500 mutations described in humans and only 20 in the
dog, and that DCM only causing mutations are rare in humans [149,150], it is possible that mutations in
non-human animals could cause DCM alone, or DCM accompanied by minimal skeletal disruption.

3. Conclusions

Both dystrophin and cardiac troponin T are likely to show regions of interest in relation to DCM
given the similarities and conservation between the human and animal sequences. The two genes have
differing functions within the cell, but are linked between the species by both sequence and cellular
mechanism similarities and by the fact that mutations in each gene have been shown to cause DCM in
both humans and non-humans. Many of the cardiac troponin T mutations that cause DCM in human
cases result in altered calcium sensitivity, which is also likely to affect animals as it is a common feature
of many DCMs [52,56,151]. Therefore, despite the aforementioned caveats, both genes make good
candidates for undertaking mutation detection studies in species affected by DCM. In the long term
this may help with diagnosis and treatment of affected veterinary patients and assist with breeding
programs in animals.
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